Problem

Source: Bulgaria NMO 2024, Problem 6

Tags: geometry, Menelaus, tangent circles, P6



Given is a triangle $ABC$ and a circle $\omega$ with center $I$ that touches $AB, AC$ and meets $BC$ at $X, Y$. The line through $I$ perpendicular to $BC$ meets the line through $A$ parallel to $BC$ at $Z$. Show that the circumcircles of $\triangle XYZ$ and $\triangle ABC$ are tangent to each other.