Problem

Source: Mongolia national olympiad 2024

Tags: combinatorics, number theory, complete residue system



A set $X$ consisting of $n$ positive integers is called $\textit{good}$ if the following condition holds: For any two different subsets of $X$, say $A$ and $B$, the number $s(A) - s(B)$ is not divisible by $2^n$. (Here, for a set $A$, $s(A)$ denotes the sum of the elements of $A$) Given $n$, find the number of good sets of size $n$, all of whose elements is strictly less than $2^n$.