Problem

Source: Francophone 2024, Senior P4

Tags: number theory, number theory proposed, prime numbers, Divisors



Let $p$ be a fixed prime number. Find all integers $n \ge 1$ with the following property: One can partition the positive divisors of $n$ in pairs $(d,d')$ satisfying $d<d'$ and $p \mid \left\lfloor \frac{d'}{d}\right\rfloor$.