Problem

Source: Francophone 2024, Junior P2

Tags: combinatorics, combinatorics proposed, game, winning strategy



Given $n \ge 2$ points on a circle, Alice and Bob play the following game. Initially, a tile is placed on one of the points and no segment is drawn. The players alternate in turns, with Alice to start. In a turn, a player moves the tile from its current position $P$ to one of the $n-1$ other points $Q$ and draws the segment $PQ$. This move is not allowed if the segment $PQ$ is already drawn. If a player cannot make a move, the game is over and the opponent wins. Determine, for each $n$, which of the two players has a winning strategy.