Problem

Source: Bulgarian Spring Tournament 2024 12.3

Tags: number theory



For a positive integer $n$, denote with $b(n)$ the smallest positive integer $k$, such that there exist integers $a_1, a_2, \ldots, a_k$, satisfying $n=a_1^{33}+a_2^{33}+\ldots+a_k^{33}$. Determine whether the set of positive integers $n$ is finite or infinite, which satisfy: a) $b(n)=12;$ b) $b(n)=12^{12^{12}}.$