Given is a triangle $ABC$ and two points $D \in AC, E \in BD$ such that $\angle DAE=\angle AED=\angle ABC$. Show that $BE=2CD$ iff $\angle ACB=90^{\circ}$.
Source: Bulgarian Spring Tournament 2024 12.2
Tags: geometry
Given is a triangle $ABC$ and two points $D \in AC, E \in BD$ such that $\angle DAE=\angle AED=\angle ABC$. Show that $BE=2CD$ iff $\angle ACB=90^{\circ}$.