Problem

Source: 2023 Swedish Mathematical Competition p6

Tags: algebra, number theory



Prove that every rational number $x$ in the interval $(0, 1)$ can be written as a finite sum of different fractions of the type $\frac{1}{k(k + 1)}$ , that is, different elements in the sequence $\frac12$ , $\frac{1}{6}$ , $\frac{1}{12}$,$...$.