Problem

Source: 2023 Swedish Mathematical Competition p4

Tags: algebra, combinatorics



Let $f$ be a function that associates a positive integer $(x, y)$ with each pair of positive integers $f(x, y)$. Suppose that $f(x, y) \le xy$ for all positive integers $x$, $y$. Show that there are $2023$ different pairs $(x_1, y_1)$,$...$, $ (x_{2023}, y_{2023}$) such that $$f(x_1, y_1) = f(x_2, y_2) = ....= f(x_{2023}, y_{2023}).$$