Problem

Source: 2024 Israel TST Test 6 P3

Tags: geometry, parallelogram, concentric circles, TST, perpendicular bisector, circumcircle



Let $ABCD$ be a parallelogram. Let $\omega_1$ be the circle passing through $D$ tangent to $AB$ at $A$. Let $\omega_2$ be the circle passing through $A$ tangent to $CD$ at $D$. The tangents from $B$ to $\omega_1$ touch it at $A$ and $P$. The tangents from $C$ to $\omega_2$ touch it at $D$ and $Q$. Lines $AP$ and $DQ$ intersect at $X$. The perpendicular bisector of $BC$ intersects $AD$ at $R$. Show that the circumcircles of triangles $\triangle PQX$, $\triangle BCR$ are concentric.