Problem

Source: 2024 Israel TST Test 6 P2

Tags: algebra, polynomial, TST, polynomial division



Let $n$ be a positive integer. Find all polynomials $Q(x)$ with integer coefficients so that the degree of $Q(x)$ is less than $n$ and there exists an integer $m\geq 1$ for which \[x^n-1\mid Q(x)^m-1\]