Problem

Source: BdMO 2024 Higher Secondary National P5

Tags: geometry, incircle, homothety, Angle Chasing, excircle



Let $I$ be the incenter of $\triangle ABC$ and $P$ be a point such that $PI$ is perpendicular to $BC$ and $PA$ is parallel to $BC$. Let the line parallel to $BC$, which is tangent to the incircle of $\triangle ABC$, intersect $AB$ and $AC$ at points $Q$ and $R$ respectively. Prove that $\angle BPQ = \angle CPR$.