Problem

Source: BdMO 2024 Secondary National P5

Tags: geometry, incenter, parallelogram, Angle Chasing



Consider $\triangle XPQ$ and $\triangle YPQ$ such that $X$ and $Y$ are on the opposite sides of $PQ$ and the circumradius of $\triangle XPQ$ and the circumradius of $\triangle YPQ$ are the same. $I$ and $J$ are the incenters of $\triangle XPQ$ and $\triangle YPQ$ respectively. Let $M$ be the midpoint of $PQ$. Suppose $I, M, J$ are collinear. Prove that $XPYQ$ is a parallelogram.