Problem

Source:

Tags: algebra, Inequality



Let, $\displaystyle{S =\sum_{i=1}^{k} {n_i}^2}$. Prove that for $n_i \in \mathbb{R}^+$ $$\sum_{i=1}^{k} \frac{n_i}{S-n_i^2} \geq \frac{4}{n_1+n_2+ \cdots+ n_k}$$ Proposed by Kang Taeyoung, South Korea