Problem

Source: Caucasus MO 2024, Juniors P7

Tags: combinatorics, algebra



The positive numbers $a_1, a_2, \ldots , a_{2024}$ are placed on a circle clockwise in this order. Let $A_i$ be the arithmetic mean of the number $a_i$ and one or several following it clockwise. Prove that the largest of the numbers $A_1, A_2, \ldots , A_{2024}$ is not less than the arithmetic mean of all numbers $a_1, a_2, \ldots , a_{2024}$.