The bisectors $AA_1, CC_1$ of a triangle $ABC$ with $\angle B = 60^{\circ}$ meet at point $I$. The circumcircles of triangles $ABC, A_1IC_1$ meet at point $P$. Prove that the line $PI$ bisects the side $AC$.
Source: Sharygin Correspondence Round 2024 P12
Tags: geometry
The bisectors $AA_1, CC_1$ of a triangle $ABC$ with $\angle B = 60^{\circ}$ meet at point $I$. The circumcircles of triangles $ABC, A_1IC_1$ meet at point $P$. Prove that the line $PI$ bisects the side $AC$.