Two equal circles $\Omega_1$ and $\Omega_2$ intersect at points $A$ and $B$, and $M$ is the midpoint of $AB$. Two rays were drawn from $M$, lying in the same half-plane wrt $AB$ (see figure). The first ray intersects the circles $\Omega_1$ and $\Omega_2$ at points $X_1$ and $X_2$, and the second ray intersects them at points $Y_1$ and $Y_2$, respectively. Let $C$ be the intersection point of straight lines $AX_1$ and $BY_2$, and let $D$ be the intersection point of straight lines $AX_2$ and $BY_1$. Prove that $CD \parallel AB$.
Problem
Source: 2023 South Russian Girls MO - Assara Seniors p4
Tags: geometry, parallel, equal circles