Problem

Source: 2022 South Russian Girls MO - Assara Seniors p6

Tags: algebra, Sequence, recurrence relation



There are $2022$ numbers arranged in a circle $a_1, a_2, . . ,a_{2022}$. It turned out that for any three consecutive $a_i$, $a_{i+1}$, $a_{i+2}$ the equality $a_i =\sqrt2 a_{i+2} - \sqrt3 a_{i+1}$. Prove that $\sum^{2022}_{i=1} a_ia_{i+2} = 0$, if we know that $a_{2023} = a_1$, $a_{2024} = a_2$.