Problem

Source: RMM 2024 Problem 2

Tags: algorithm, number theory, prime numbers, Partial sums, permutations, RMM



Consider an odd prime $p$ and a positive integer $N < 50p$. Let $a_1, a_2, \ldots , a_N$ be a list of positive integers less than $p$ such that any specific value occurs at most $\frac{51}{100}N$ times and $a_1 + a_2 + \cdots· + a_N$ is not divisible by $p$. Prove that there exists a permutation $b_1, b_2, \ldots , b_N$ of the $a_i$ such that, for all $k = 1, 2, \ldots , N$, the sum $b_1 + b_2 + \cdots + b_k$ is not divisible by $p$. Will Steinberg, United Kingdom