Problem

Source: JOM 2024 P3

Tags: algebra, functional equation



Find all functions $f:\mathbb{R}^+\rightarrow\mathbb{R}^+$ such that for all $x, y\in\mathbb{R}^+$, \[ \frac{f(x)}{y^2} - \frac{f(y)}{x^2} \le \left(\frac{1}{x}-\frac{1}{y}\right)^2\]($\mathbb{R}^+$ denotes the set of positive real numbers.) (Proposed by Ivan Chan Guan Yu)