Problem

Source: JOM 2024 P1

Tags: geometry



Consider $\triangle MAB$ with a right angle at $A$ and circumcircle $\omega$. Take any chord $CD$ perpendicular to $AB$ such that $A, C, B, D, M$ lie on $\omega$ in this order. Let $AC$ and $MD$ intersect at point $E$, and let $O$ be the circumcenter of $\triangle EMC$. Show that if $J$ is the intersection of $BC$ and $OM$, then $JB = JM$. (Proposed by Matthew Kung Wei Sheng and Ivan Chan Kai Chin)