a) Given a convex hexagon $ABCDEF$, which has a center of symmetry. Prove that the perimeter of triangle $ACE$ is greater than half the perimeter of hexagon $ABCDEF$. b) Given a convex $(2n)$-gon $P$ having a center of symmetry, its vertices are colored alternately red and blue. Let $Q$ be an $n$-gon with red vertices. Is it possible to say that the perimeter of $Q$ is certainly greater than half the perimeter $P$? Solve the problem for $n = 4$ and $n = 5$.