Problem

Source: Own. Malaysian APMO CST 2024 P4

Tags: combinatorics



Ivan has a $n \times n$ board. He colors some of the squares black such that every black square has exactly two neighbouring square that are also black. Let $d_n$ be the maximum number of black squares possible, prove that there exist some real constants $a$, $b$, $c\ge 0$ such that; $$an^2-bn\le d_n\le an^2+cn.$$ Proposed by Ivan Chan Kai Chin