Problem

Source: 17th Durer Competition 2024 Finals E+ P3, restated

Tags: combinatorics



We have a stick of length $2n{}$ and a machine which cuts sticks of length $k\in\mathbb{N}$ with $k>1$ into two sticks with arbitrary positive integer lengths. What is the smallest number of cuts after which we can always find some sticks whose lengths sum up to $n{}$?