Describe all ordered sets of four real numbers $(a, b, c, d)$ for which the values $a + b, b + c, c + d, d + a$ are all non-zero and \[\frac{a+2b+3c}{c+d}=\frac{b+2c+3d}{d+a}=\frac{c+2d+3a}{a+b}=\frac{d+2a+3b}{b+c}.\]
Source: 17th Durer Competition 2024 Finals E+ P1
Tags: algebra, Fractions
Describe all ordered sets of four real numbers $(a, b, c, d)$ for which the values $a + b, b + c, c + d, d + a$ are all non-zero and \[\frac{a+2b+3c}{c+d}=\frac{b+2c+3d}{d+a}=\frac{c+2d+3a}{a+b}=\frac{d+2a+3b}{b+c}.\]