Problem

Source: Mongolian Mathematical Olympiad P4

Tags: algebra, functional equation, function



Find all functions $f : \mathbb{R} \to \mathbb{R}$ and $h : \mathbb{R}^2 \to \mathbb{R}$ such that \[f(x+y-z)^2=f(xy)+h(x+y+z, xy+yz+zx)\]for all real numbers $x,y,z$.