Problem

Source: 2024 Israel TST Test 3 P3

Tags: functional equation, algebra, continuous function, Positive reals, function



Find all continuous functions $f\colon \mathbb{R}_{>0}\to \mathbb{R}_{\geq 1}$ for which the following equation holds for all positive reals $x$, $y$: \[f\left(\frac{f(x)}{y}\right)-f\left(\frac{f(y)}{x}\right)=xy\left(f(x+1)-f(y+1)\right)\]