Let $\Delta ABC$ be a triangle and $L$ be the foot of the bisector of $\angle A$. Let $O_1$ and $O_2$ be the circumcenters of $\triangle ABL$ and $\triangle ACL$ respectively and let $B_1$ and $C_1$ be the projections of $C$ and $B$ through the bisectors of the angles $\angle B$ and $\angle C$ respectively. The incircle of $\Delta ABC$ touches $AC$ and $AB$ at points $B_0$ and $C_0$ respectively and the bisectors of angles $\angle B$ and $\angle C$ meet the perpendicular bisector of $AL$ at points $Q$ and $P$ respectively. Prove that the five lines $PC_0, QB_0, O_1C_1, O_2B_1$ and $BC$ are all concurrent.
Problem
Source: Brazil EGMO TST2 2023 #3
Tags: geometry, circumcircle, Circumcenter, incenter, incircle, concurrency