Problem

Source: 2023 IGMO Christmas Edition #1 International Gamma Mathematical Olympiad

Tags: algebra, inequalities



Let $x, m, a, s$ be positive real numbers such that $x, m, a, s < 1$. Prove that $$\frac{x^4}{m^3 + a^2 + s} +\frac{m^4}{a^3 + s^2 + x} + \frac{a^4}{s^3 + x^2 + m} + \frac{s^4}{x^3 + m^2 + a} > \frac{x^3 + m^3 + a^3 + s^3}{3}$$.