Let $\mathbb{Z}_{>0} = \{1, 2, 3, \ldots \}$ be the set of all positive integers. Find all strictly increasing functions $f : \mathbb{Z}_{>0} \rightarrow \mathbb{Z}_{>0}$ such that $f(f(n)) = 3n$.
Problem
Source: Brazil EGMO TST2 2023 #1
Tags: increasing functions, strictly increasing, functional equation, number theory, algebra, function