Let $p$ and $q$ be distinct odd primes. Show that $$\bigg\lceil \dfrac{p^q+q^p-pq+1}{pq} \bigg\rceil$$is even.
Problem
Source: Brazil EGMO TST1 2023 #2
Tags: algebra, number theory, ceiling function, prime numbers
Source: Brazil EGMO TST1 2023 #2
Tags: algebra, number theory, ceiling function, prime numbers
Let $p$ and $q$ be distinct odd primes. Show that $$\bigg\lceil \dfrac{p^q+q^p-pq+1}{pq} \bigg\rceil$$is even.