Problem

Source: Brazil EGMO TST1 2023 #1

Tags: geometry, circumcircle, orthocenter, Circumcenter, Nine Point Circle



Let $\Delta ABC$ be a triangle with orthocenter $H$ and $\Gamma$ be the circumcircle of $\Delta ABC$ with center $O$. Consider $N$ the center of the circle that passes through the feet of the heights of $\Delta ABC$ and $P$ the intersection of the line $AN$ with the circle $\Gamma$. Suppose that the line $AP$ is perpendicular to the line $OH$. Prove that $P$ belongs to the reflection of the line $OH$ by the line $BC$.