Problem

Source: 2023 IGO Elementary P2

Tags: geometry, equal segments, isosceles



In an isosceles triangle $ABC$ with $AB = AC$ and $\angle A = 30^o$, points $L$ and $M$ lie on the sides $AB$ and $AC$, respectively such that $AL = CM$. Point $K$ lies on $AB$ such that $\angle AMK = 45^o$. If $\angle LMC = 75^o$, prove that $KM +ML = BC$. Proposed by Mahdi Etesamifard - Iran