Problem

Source: 2023 IGO Intermediate P3

Tags: geometry, tangent circles



Let $\omega$ be the circumcircle of the triangle $ABC$ with $\angle B = 3\angle C$. The internal angle bisector of $\angle A$, intersects $\omega$ and $BC$ at $M$ and $D$, respectively. Point $E$ lies on the extension of the line $MC$ from $M$ such that $ME$ is equal to the radius of $\omega$. Prove that circumcircles of triangles $ACE$ and $BDM$ are tangent. Proposed by Mehran Talaei - Iran