Problem

Source: 2023 IGO Adcanced P4

Tags: geometry, bisects segment



Let $ABC$ be a triangle with bisectors $BE$ and $CF$ meet at $I$. Let $D$ be the projection of $I$ on the $BC$. Let M and $N$ be the orthocenters of triangles $AIF$ and $AIE$, respectively. Lines $EM$ and $FN$ meet at $P.$ Let $X$ be the midpoint of $BC$. Let $Y$ be the point lying on the line $AD$ such that $XY \perp IP$. Prove that line $AI$ bisects the segment $XY$. Proposed by Tran Quang Hung - Vietnam