Problem

Source: IGO 2023 Advanced P2

Tags: geometry, incenter, angle bisector



Let ${I}$ be the incenter of $\triangle {ABC}$ and ${BX}$, ${CY}$ are its two angle bisectors. ${M}$ is the midpoint of arc $\overset{\frown}{BAC}$. It is known that $MXIY$ are concyclic. Prove that the area of quadrilateral $MBIC$ is equal to that of pentagon $BXIYC$. Proposed by Dominik Burek - Poland