Problem

Source:

Tags: number theory



Positive integer $d$ is not perfect square. For each positive integer $n$, let $s(n)$ denote the number of digits $1$ among the first $n$ digits in the binary representation of $\sqrt{d}$ (including the digits before the point). Prove that there exists an integer $A$ such that $s(n)>\sqrt{2n}-2$ for all integers $n\ge A$