There is a bacterium in one of the cells of a $10 \times 10{}$ checkered board. At the first move, the bacterium shifts to a cell adjacent by side to the original one, and divides into two bacteria (both stay in the same cell). Then again, one of the bacteria on the board shifts to a cell adjacent by side and divides into two bacteria, and so on. Is it possible that after some number of such moves the number of bacteria in each cell of the board is the same? Alexandr Gribalko
Problem
Source: 44th International Tournament of Towns, Junior A-Level P2, Spring 2023
Tags: combinatorics, board