Problem

Source: Find strictly positive real numbers...

Tags: algebra unsolved, algebra



Determine strictly positive real numbers $ a_{1},a_{2},...,a_{n}$ if for any $ n\in N^*$ takes place equality: $ a_{1}^2+a_{2}^2+...+a_{n}^2=a_{1}+a_{2}+...+a_{n}+\frac{n(n^2+6n+11)}{3}$