Problem

Source: 2023 Turkey Junior National Olympiad P4

Tags: ceiling function, floor function, algebra



Let $x_1,x_2,\dots,x_{31}$ be real numbers. Then find the maximum value can $$\sum_{i,j=1,2,\dots,31, \; i\neq j}{\lceil x_ix_j \rceil }-30\left(\sum_{i=1,2,\dots,31}{\lfloor x_i^2 \rfloor } \right)$$achieve. P.S.: For a real number $x$ we denote the smallest integer that does not subseed $x$ by $\lceil x \rceil$ and the biggest integer that does not exceed $x$ by $\lfloor x \rfloor$. For example $\lceil 2.7 \rceil=3$, $\lfloor 2.7 \rfloor=2$ and $\lfloor 4 \rfloor=\lceil 4 \rceil=4$