Problem

Source: 2023 Turkey Junior National Olympiad P2

Tags: geometry, incenter



Let $ABCD$ be an inscribed quadrilateral. Let the incenters of $BAD$ and $CAD$ be $I$ and $J$ respectively. Let the intersection point of the line that passes through $I$ and perpendicular to $BD$ and the line that passes through $J$ and perpendicular to $AC$ be $K$. Prove that $KI=KJ$