Initially, there are $n$ red boxes numbered with the numbers $1,2,\dots ,n$ and $n$ white boxes numbered with the numbers $1,2,\dots ,n$ on the table. At every move, we choose $2$ different colored boxes and put a ball on each of them. After some moves, every pair of the same numbered boxes has the property of either the number of balls from the red one is $6$ more than the number of balls from the white one or the number of balls from the white one is $16$ more than the number of balls from the red one. With that given information find all possible values of $n$