Problem

Source: EMC 2023 Juniors P4

Tags: emc, algebra, Inequality, 2023



We say that a $2023$-tuple of nonnegative integers $(a_1,\hdots,a_{2023})$ is sweet if the following conditions hold: $a_1+\hdots+a_{2023}=2023$ $\frac{a_1}{2}+\frac{a_2}{2^2}+\hdots+\frac{a_{2023}}{2^{2023}}\le 1$ Determine the greatest positive integer $L$ so that \[a_1+2a_2+\hdots+2023a_{2023}\ge L\]holds for every sweet $2023$-tuple $(a_1,\hdots,a_{2023})$ Ivan Novak