Problem

Source: EMC 2023 Seniors P2

Tags: emc, 2023, geometry, right triangle, circumcircle



Let $ABC$ be a triangle such that $\angle BAC = 90^{\circ}$. The incircle of triangle $ABC$ is tangent to the sides $\overline{BC}$, $\overline{CA}$, $\overline{AB}$ at $D,E,F$ respectively. Let $M$ be the midpoint of $\overline{EF}$. Let $P$ be the projection of $A$ onto $BC$ and let $K$ be the intersection of $MP$ and $AD$. Prove that the circumcircles of triangles $AFE$ and $PDK$ have equal radius. Kyprianos-Iason Prodromidis