Let's call a pair of positive integers $\overline{a_1a_2\ldots a_k}$ and $\overline{b_1b_2\ldots b_k}$ $k$-similar if all digits $a_1, a_2, \ldots, a_k , b_1 , b_2, \ldots, b_k$ are distinct, and there exist distinct positive integers $m, n$, for which the following equality holds: $$a_1^m + a_2^m + \ldots + a_k^m = b_1^n + b_2^n + \ldots + b_k^n$$ For which largest $k$ do there exist $k$-similar numbers? Proposed by Oleksiy Masalitin