Problem

Source: 45th International Tournament of Towns, Senior O-Level P1, Fall 2023

Tags: algebra, polynomial



1. Baron Munchhausen was told that some polynomial $P(x)=a_{n} x^{n}+\ldots+a_{1} x+a_{0}$ is such that $P(x)+P(-x)$ has exactly 45 distinct real roots. Baron doesn't know the value of $n$. Nevertheless he claims that he can determine one of the coefficients $a_{n}, \ldots, a_{1}, a_{0}$ (indicating its position and value). Isn't Baron mistaken? Boris Frenkin