Problem

Source: 45th International Tournament of Towns, Junior A-Level P6, Fall 2023

Tags: rectangle, combinatorial geometry



6. The baker has baked a rectangular pancake. He then cut it into $n^{2}$ rectangles by making $n-1$ horizontal and $n-1$ vertical cuts. Being rounded to the closest integer, the areas of resulting rectangles equal to all positive integers from 1 to $n^{2}$ in some order. For which maximal $n$ could this happen? (Half-integers are rounded upwards.) Georgy Karavaev