Problem

Source: 2020 IGMO R1 #3 (A4) https://artofproblemsolving.com/community/c594864h2364137p19272184

Tags: algebra, inequalities



Given that $x_1, x_2,..., x_k$ are positive reals such that $\sum^k_{i=1}x^{n-1}_i = k - 1$, prove that $$\frac{x^n_1}{x_2 + x_3 +... + x_k} +\frac{x^n_2}{x_1 + x_3 + ... + x_k} + ...+ \frac{x^n_k}{x_1 + x_2 +... + x_{k-1}} \ge 1$$