Problem

Source: 45th International Tournament of Towns, Senior A-Level P5, Fall 2023

Tags: geometry



Chord $D E$ of the circumcircle of the triangle $A B C$ intersects sides $A B$ and $B C$ in points $P$ and $Q$ respectively. Point $P$ lies between $D$ and $Q$. Angle bisectors $D F$ and $E G$ are drawn in triangles $A D P$ and $Q E C$. It turned out that the points $D$, $F, G, E$ are concyclic. Prove that the points $A, P, Q, C$ are concyclic. Azamat Mardanov