Problem

Source: 17th Durer Competition 2023 E+ P2

Tags: combinatorics, graph theory



One quadrant of the Cartesian coordinate system is tiled with $1\times 2$ dominoes. The dominoes don’t overlap with each other, they cover the entire quadrant and they all fit in the quadrant. Farringdon the flea is initially sitting at the origin and is allowed to jump from one corner of a domino to the opposite corner any number of times. Is it possible that the dominoes are arranged in such a way that Farringdon is unable to move to a distance greater than 2023 from the origin?