Problem

Source: IMO Shortlist 1994, C4

Tags: algorithm, induction, vector, combinatorics, IMO Shortlist



There are $ n + 1$ cells in a row labeled from $ 0$ to $ n$ and $ n + 1$ cards labeled from $ 0$ to $ n$. The cards are arbitrarily placed in the cells, one per cell. The objective is to get card $ i$ into cell $ i$ for each $ i$. The allowed move is to find the smallest $ h$ such that cell $ h$ has a card with a label $ k > h$, pick up that card, slide the cards in cells $ h + 1$, $ h + 2$, ... , $ k$ one cell to the left and to place card $ k$ in cell $ k$. Show that at most $ 2^n - 1$ moves are required to get every card into the correct cell and that there is a unique starting position which requires $ 2^n - 1$ moves. [For example, if $ n = 2$ and the initial position is 210, then we get 102, then 012, a total of 2 moves.]